Warringtonfire
Holmesfield Road
Warrington
Cheshire
WA1 2DS
United Kingdom
T: +44 (0)1925 655116
W: www.warringtonfire.com

Title:

The Fire Resistance Performance Of A Loadbearing Timber Floor Assembly Protected by a Plasterboard Ceiling And Incorporating Down Lighters, When Tested in Accordance with BS 476: Part 21: 1987, Clause 7

Date of Test:

7th May 2020

Issue 1:

25th June 2020

WF Report No.

427974

Prepared for:

JCC Lighting Products Limited

Innovation Centre, Beeding Close, Southern Cross Trading Estate, West Sussex, PO22 9TS United Kingdom

Test Specimen

Summary of Tested Specimen

The timber floor had overall nominal dimensions of 4290 mm long by 2980 mm wide and comprised 'James Jones' engineered timber I-joists at 600 mm centres. The upper surface of the floor comprised nominally 22 mm thick tongue and grooved chipboard flooring.

The floor assembly was protected on its underside by a direct fixed ceiling, formed from a layer of 15 mm thick British Gypsum 'Wallboard' plasterboard, the ceiling was screw fixed to the underside of the floor joists.

The ceiling incorporated eight 'JCC Lighting' downlighter light fittings referenced as follows:

Test Ref.	Model Ref.
Downlighter 1	V50 JC1001 WH/CH/BN
Downlighter 2	V50 Tilt JC1002 WH/CH/BN
Downlighter 3	JC94113 WH/CH/BN
Downlighter 4	JC94114 Tilt WH/CH/BN
Downlighter 5	JC94110 WH/CH/BN
Downlighter 6	JC010010 WH/CH/BN
Downlighter 7	JC010016 WH/CH/BN
Downlighter 8	JC010023 WH/CH/BN

The floor supported a uniformly distributed load of 1.10 kN/m². This load was provided by the test sponsor as to represent the expected working load for the floor construction in practice.

Detailed drawings of the test specimen(s) and a comprehensive description of the test construction based on a detailed survey of the specimen(s) and information supplied by the sponsor of the test are included in the Test Specimen and Schedule of Components sections of this report.

Performance Criteria and Test Results

Loadbearing
Capacity

The specimen is deemed to have failed if it's no longer able to support the test load. This is taken to be when either the maximum allowable deflection or rate of deflection is exceeded.

Criteria	Value
(L) Clear span, in mm	4100
(d) Depth of Structural Section, in mm	220
Max Deflection (L/20) - in mm	205.0
Rate (L ² / 9000d) - in mm	8.5
Rate is not applicable until (L/30) exceeded - in mm	136.7

The specimen satisfied this requirement for 33 minutes, after which time the test was discontinued.

Integrity It is required that there is no collapse of the specimen, no sustained flaming on the unexposed surface and no loss of impermeability.

Integrity Result 33 minutes

No failure*

Insulation

Insulation: It is required that the mean temperature rise of the unexposed surface shall not be greater than 140°C and that the maximum temperature rise shall not be greater than 180°C. Insulation failure also occurs simultaneously with integrity failure

Insulation Result

33 minutes

No failure*

Date of Test

7th May 2020

This report may only be reproduced in full. Extracts or abridgements of reports shall not be published without permission of Warringtonfire. All work and services carried out by Warringtonfire Testing and Certification Limited are subject to, and conducted in accordance with, the Standard Terms and Conditions of Warringtonfire Testing and Certification Limited, which are available at https://www.element.com/terms/terms-and-conditions or upon request.

^{*}Test duration. The test was discontinued after a period of 33 minutes.

Signatories

Responsible Officer

C. Sweeney* Technical Officer

W. Drazkiewicz*

Technical Manager - Fire Resistance

Head of Department

S. Hankey*

Business Unit Head - Fire Resistance

* For and on behalf of Warringtonfire.

Report Issued: 25th June 2020

This copy has been produced from a .pdf format electronic file that has been provided by **Warringtonfire** to the sponsor of the report and must only be reproduced in full. Extracts or abridgements of reports must not be published without permission of **Warringtonfire**. The pdf copy supplied is the sole authentic version of this document. All pdf versions of this report bear authentic signatures of the responsible **Warringtonfire** staff.

Revision History

Issue No:	Re-issue Date:
Revised By:	Approved By:
Reason for Revision:	

Issue No:	Re-issue Date:
Revised By:	Approved By:
Reason for Revision:	

CONTENTS PAGE NO.

TEST SPECIMEN	2
PERFORMANCE CRITERIA AND TEST RESULTS	
SIGNATORIES	4
REVISION HISTORY	
TEST CONDITIONS	7
TEST OBSERVATIONS	23
TEMPERATURE, PRESSURE AND DEFLECTION DATA	27
ON-GOING IMPLICATIONS	36

Test Conditions

Standard

Clause 7 of BS 476: Part 21: 1987 'Methods for determination of the fire resistance of loadbearing elements of construction'.

The purpose of the test was to evaluate the performance of a timber floor construction protected by a ceiling of known fire resistance, when incorporating down lighter light fitting assemblies.

Sampling

Warringtonfire was not involved in the sampling or selection of the tested specimen or any of the components.

The results obtained during the test only apply to the test samples as provided by the test sponsor.

Installation

Representatives of **Warringtonfire** assembled the floor construction and installed the downlighters between the 4th and 6th May 2020.

Conditioning

The specimen's storage, construction, and test preparation took place in the test laboratory over a total, combined time of four days. Throughout this period of time both the temperature and the humidity of the laboratory were measured and recorded as being within a range of from 16.5°C to 30°C and 22% to 52.5% respectively.

Instruction to Test

The test was conducted on the 7th May 2020 at the request of **JCC Lighting Products Limited**, the test sponsor.

Ambient Temperature

The ambient air temperature in the vicinity of the test construction was 21°C at the start of the test with a maximum variation of -1°C during the test.

Furnace

The furnace was controlled so that its mean temperature complied with the requirements of BS 476: Part 20: 1987, Clause 3.1, using eight mineral insulated thermocouples distributed over a plane 100 mm from the underside of the test construction.

Thermocouples

Thermocouples were provided to monitor the unexposed surface of the specimen. The output of all instrumentation was recorded at no less than one minute intervals. The locations and reference numbers of the various unexposed surface thermocouples are shown in Figure 1. Additional thermocouples were included for information purposes only. These additional thermocouples were installed within the assembly during its construction located at mid height of the cavity adjacent to the light fittings.

Loadbearing Capacity Criteria

A linear deflection transducer was provided at the approximate centre on the unexposed surface of the specimen to record its vertical deflection.

Furnace Pressure

After the first five minutes of testing and for the remainder of the test, the furnace atmospheric pressure was controlled so that it complied with the requirements of BS 476: Part 20: 1987, Clause 3.2.2 (including allowance for transient occurrences in-line with Clause 12(I)). The calculated pressure differential relative to the laboratory atmosphere at a position 100 mm below the underside of the assembly was 18 (±2) Pa

Test Construction

Figure 1- Plan View of Test Specimen

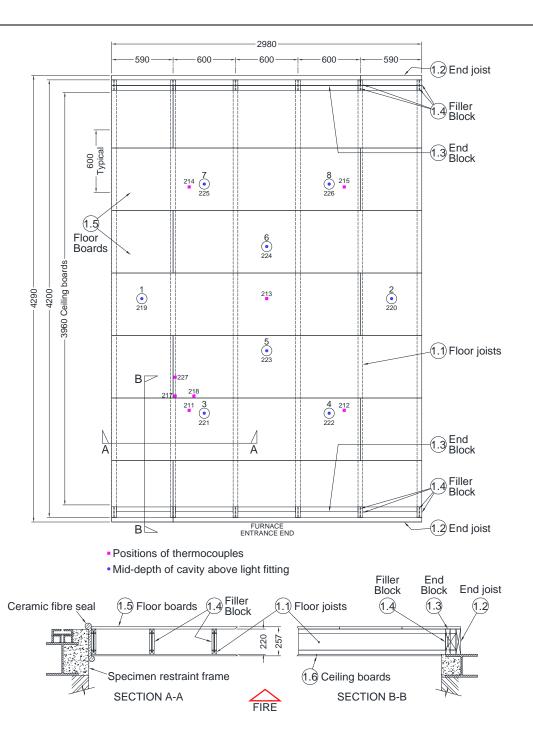


Figure 2 – Details of Downlighter Positions

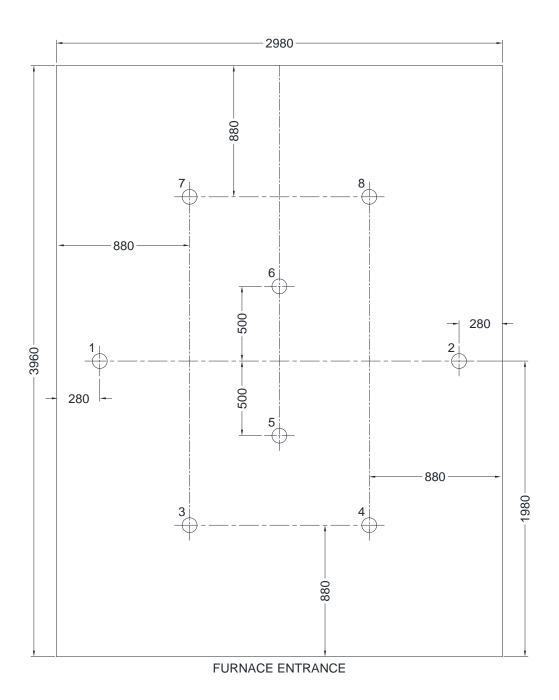
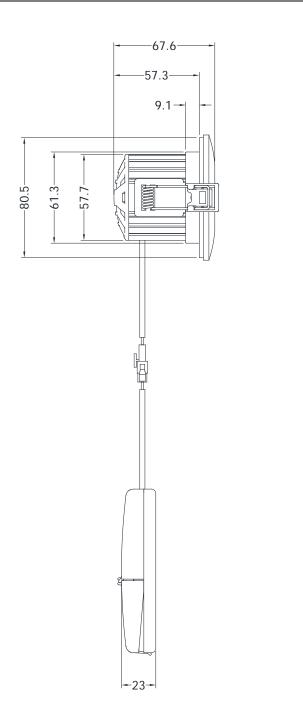



Figure 3 – Details of Downlighter 1

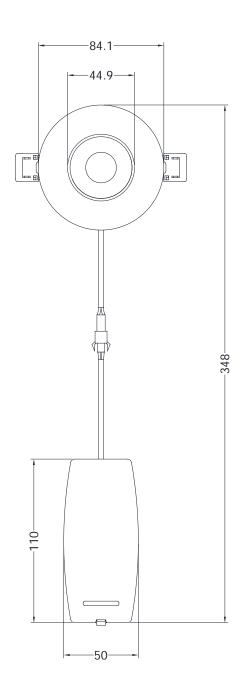


Figure 4 – Details of Downlighter 2

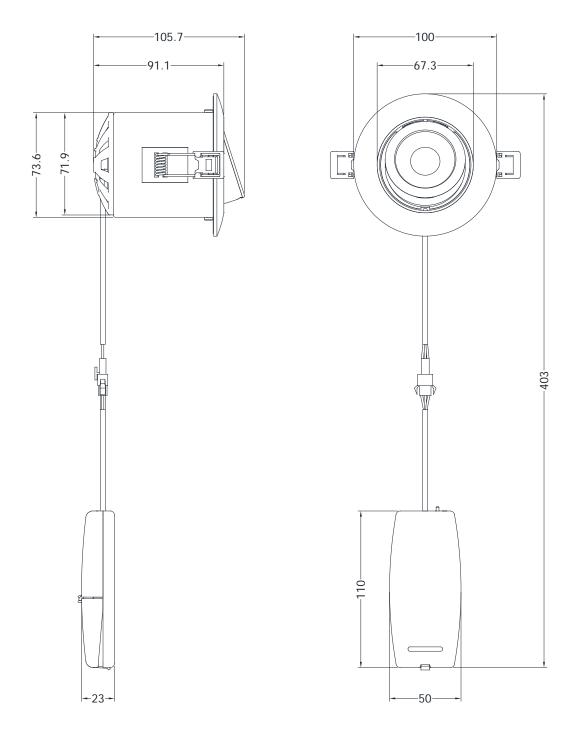
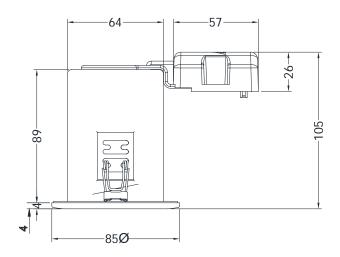



Figure 5 – Details of Downlighter 3

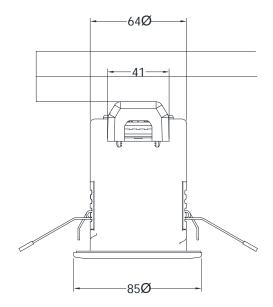
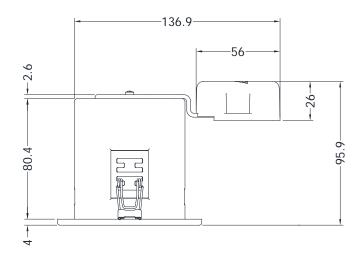



Figure 6 – Details of Downlighter 4

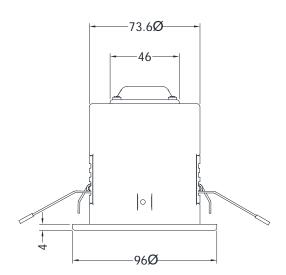
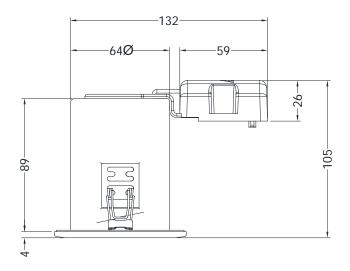



Figure 7 – Details of Downlighter 5

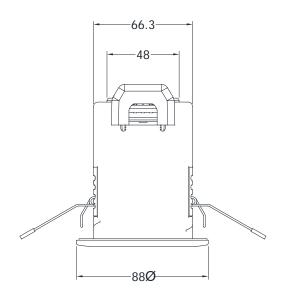


Figure 8 – Details of Downlighter 6

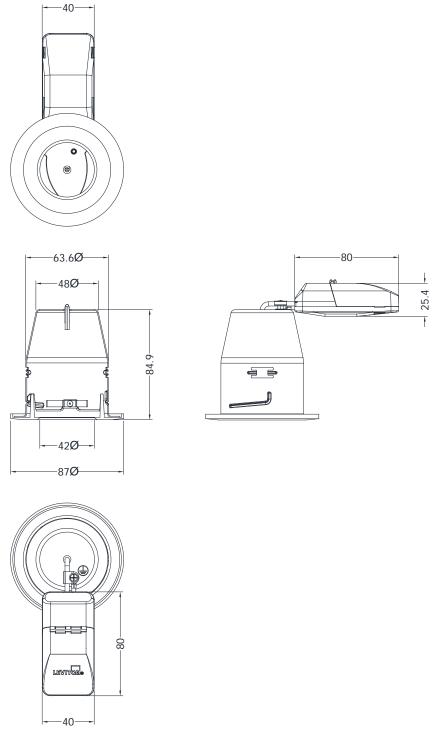


Figure 9 – Details of Downlighter 7

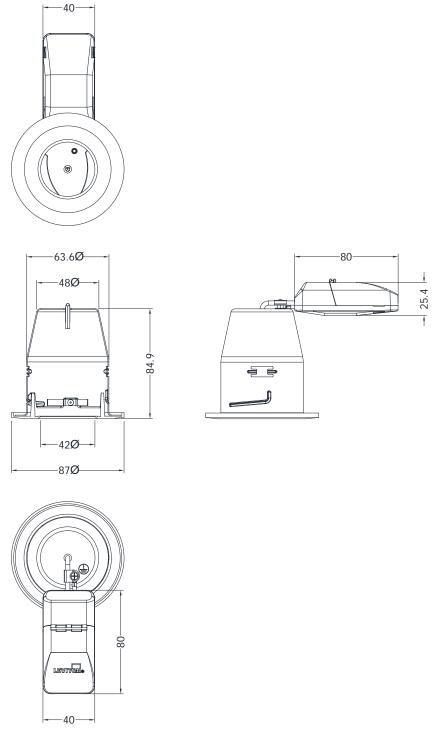
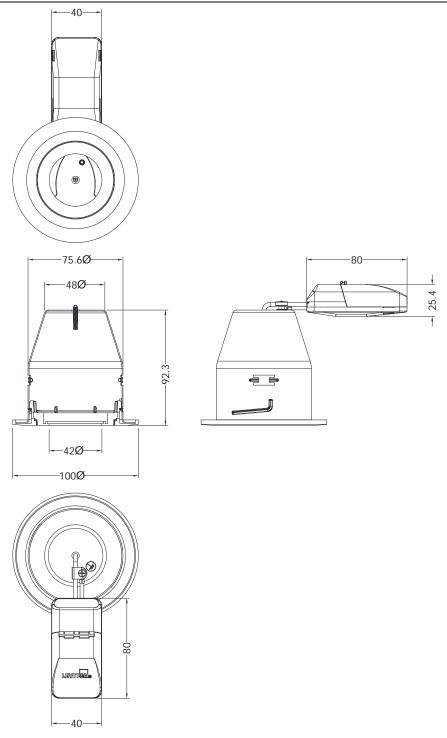



Figure 10 – Details of Downlighter 8

Schedule of Components

(Refer to Figures 1 to 10)

(All other details are as stated by the sponsor)

<u>Item</u> <u>Description</u>

1. Timber Floor

1.1. Engineered-Joists

Manufacturer : James Jones & Sons Ltd

Reference : JJI 220 A+

Assembled joist size : 47.2 mm wide x 220 mm deep x 4200 mm long

Top and bottom chords

i. material
 ii. density
 ii. General commercial softwood
 iii. 379.4 kg/m³, measured

iii. cross section : 44.4 mm high x 47.2 mm wide x 4200 mm long

Web

i. material
 ii. density
 ii. Oriented Strand Board, OSB
 iii. 638.6 kg/m³, measured

iii. cross section : 156 mm high x 9.6 mm thick x 4200 mm

Centres : 600 mm, please see Figure 1

1.2. End Joists

Material : British home-grown, rough sawn softwood, kiln dried

glue-lam joist

Grade : C16, to BS EN 519
Density : 440.8 kg/m³, measured

Size : 44.2 mm wide x 220 mm deep x 2980 long

Fixing method : Fitted across the ends of the posi-joists and fixed with 2

off 100 mm long x 3.2 mm diameter ring shank fired

nails to the top and bottom chords of each joist

1.3. Ceiling Closure Joist (Section of End-Joist)

i. materials : British home-grown, rough sawn softwood, kiln dried

glue-lam joist

ii. cross section : 44.2 mm wide x 220 mm deep

iii. fixing method : Fitted between the joists, item 1.2, and fixed with

100 mm long x 3.2 mm diameter ring shank fired nails.

Please see Figure 1 for positions

1.4. Filler & Backer Blocks

i. material
 ii. density
 i. Oriented Strand Board, OSB
 ii. 551.6 kg/m³, measured

iii. cross section : 102 mm wide x 132 mm high x 18.2 mm thick

iv. fixing method : Fitted between the bottom chords of joist and fixed with

65 mm long ring shank nails that were bent at 90

degrees. Please see Figure 1 for positions

1. Timber Floor (Continued)

1.5. Floor Boards

i. material : Flooring grade tongue and groove chipboards

ii. thickness : 22 mm

iii. density : 660.9 kg/m³, measured

iv. fixing method : Fitted in a single layer and bonded to the bottom chords

of each joist and the soffit of the end joists as well as in the tongue and groove of adjoining boards. Also, fixed with 64.3 mm long x 4.4 mm diameter countersunk steel screws to floor joists at 300 mm centres around the

perimeter and 600 mm in the field of each board

1.6. Ceiling Boards

Manufacturer : British Gypsum Reference : Gyproc Wallboard

Material : Type A gypsum complete with strong paper liners

Thickness : 1 off layer 15 mm thick Density : 763.8 kg/m³, measured

Fixing method The boards were screw fixed to the soffit of the joists

with all joints staggered, paper taped and skimmed with

British Gypsum jointing compound

i. manufacturer : British Gypsum

ii. overall size : 42 mm long x 3.5 mm diameter drywall screws

iii. centres : 230 mm centres along joints and 230 mm to the

perimeter of the ceiling

2. Downlighter 1

Manufacturer : JCC Lighting

Reference : V50 JC1001 WH/CH/BN Overall dimensions and construction : See Figure 3 for details

Luminaire Details

i. body materials : Steel, Heat Sink of extruded aluminium, Lens of

Polycarbonate, Rim of Die cast aluminium

ii. diffuser material : PMMA iii. diffuser rating : 650°C

chipset **SUNPU 2828** iv. weight 0.29Kg ٧. vi. input voltage 230-240V vii. input frequency 50-60Hz viii. inrush current ≤5A 2.2µS 175mA ix. running current

x. electrical class : II
xi. lamp type : LED
xii. dimmable : Yes
xiii. MacAdam steps : 5

xiv. lumen depreciation : L70 @ 51,000hrs xv. LED driver manufacturer : JCC Lighting

xvi. IP rating : IP65

xvii. operating temperature : -5 °C to 25 °C xviii. correlated colour temperature : 3000K & 4000k

xix.colour rendering index: Ra80xx.forward voltage: 36V DCxxi.total power: 7W

2. Downlighter 1

Luminaire Details

xxii. power factor : 0.9

xxiii. intumescent : 80 mm x diameter x 1 mm thick graphite based

intumescent

xxiv. sealing ring 10 mm x wide x 1 mm thick silicone rubber based seal

xxv. cut out size : 70 mm

3. Downlighter 2

Manufacturer : JCC Lighting

Reference : V50 Tilt JC1002 WH/CH/BN Overall dimensions and construction : See Figure 4 for details

Luminaire Details

i. body materials
 i. Steel, Heat Sink of extruded aluminium, Lens of

Polycarbonate, Rim of Die cast aluminium

ii. diffuser material : PMMA iii. diffuser rating : 650°C iv. chipset : SUNPU

iv. chipset

v. weight

vi. input voltage

vii. input frequency

viii. inrush current

ix. running current

x. electrical class

xi. lamp type

viii. chipset

ix. SUNPU 2828

ix. 0.46Kg

ix. 230-240V

ix. 50-60Hz

ix. 175mA

ix. 175mA

ix. LED

viii. dimmable

ix. LED

xii. dimmable : Yes
xiii. MacAdam steps : 5

xiv. lumen depreciation : L70 @ 51,000hrs xv. LED driver manufacturer : JCC Lighting

xvi. IP rating : IP65

xvii. operating temperature : -5 °C to 25 °C xviii. correlated colour temperature : 3000K & 4000k

xix.colour rendering index:Ra80xx.forward voltage:36V DCxxi.total power:7Wxxii.power factor:0.9

xxiii. intumescent : 92 mm x diameter x 1 mm thick graphite based

intumescent (top of can)

xxiv. sealing ring : 10 mm x wide x 1 mm thick silicone rubber based seal

xxv. cut out size : 85 mm

4. Downlighter 3

Manufacturer : JCC Lighting

Reference : JC94113 WH/CH/BN
Overall dimensions and construction : See Figure 5 for details

Luminaire Details

i. body materials : Mild Steel

ii. bezel materials : Die Cast Aluminium

iii. weight : 0.25kg
iv. input voltage : 220-240vAC
v. electrical class : Class II
vi. lamp type : GU10 Cap
vii. maximum lamp size : 50W Halogen

4. Downlighter 3 (Continued)

Luminaire Details

viii. IP rating : IP20

ix. operating temperature : Ambient 26°C

x. intumescent : 50 mm x diameter x 1 mm thick graphite based

intumescent (top of can)

xi. sealing ring : 10 mm x wide x 1mm thick silicone rubber based seal

xii. cut out size : 74 mm

5. Downlighter 4

Manufacturer : JCC Lighting

Reference : JC94114 Tilt WH/CH/BN Overall dimensions and construction : See Figure 6 for details

Luminaire Details

i. body materials : Mild Steel

ii. bezel materials : Die Cast Aluminium

iii. weight : 0.32kg
iv. input voltage : 220-240vAC
v. electrical class : Class II
vi. lamp type : GU10 Cap
vii. maximum lamp size : 50W Halogen

viii. IP rating : IP20

ix. operating temperature : Ambient 26°C

x. intumescent/sealing ring : 50 mm x diameter x 1 mm thick graphite based

intumescent (top of can)

xi. sealing ring : 10 mm x wide x 1 mm thick silicone rubber based seal

xii. cut out size : 85 mm

6. Downlighter 5

Manufacturer : JCC Lighting

Reference : JC94110 WH/CH/BN
Overall dimensions and construction : See Figure 7 for details

Luminaire Details

i. body materials : Mild Steel

ii. bezel materials : Die Cast Aluminium iii. diffuser material : Heat Resistant Glass

iv. weight: 0.28kgv. input voltage: 220-240vACvi. electrical class: Class IIvii. lamp type: GU10 Capviii. maximum lamp size: 50W Halogen

ix. IP rating : IP65

x. operating temperature : Ambient 26°C

xi. intumescent : 50 mm x diameter x 1 mm thick graphite based

intumescent (top of can)

xii. sealing ring : 10 mm x wide x 1 mm thick silicone rubber based seal

xiii. cut out size : 74 mm

7. Downlighter 6

Manufacturer : JCC Lighting

Reference : JC010010 WH/CH/BN
Overall dimensions and construction : See Figure 8 for details

Luminaire Details

i. body materials : Mild Steel

ii. bezel materials : Die Cast Aluminium

iii. weight: 0.24kgiv. input voltage: 220-240vACv. electrical class: Class Ivi. lamp type: GU10 Cap

vii. maximum lamp size : LED GU10 Lamps Only – 10W

viii. IP rating : IP20

ix. operating temperature : Ambient 26°C

x. sealing ring : 9.5 mm wide x 1 mm thick silicone rubber based seal

xi. cut out size : 72 mm

8. Downlighter 7

Manufacturer : JCC Lighting

Reference : JC010016 WH/CH/BN
Overall dimensions and construction : See Figure 9 for details

Luminaire Details

i. body materials : Mild Steel

ii. bezel materials : Die Cast Aluminium

iii. weight
iv. input voltage
v. electrical class
vi. lamp type
i 0.30kg
220-240vAC
Class I
GU10 Cap

vii. maximum lamp size : LED GU10 Lamps Only – 10W

viii. IP rating : IP65

ix. operating temperature : Ambient 26°C

x. sealing ring : 9.5 mm wide x 1 mm thick silicone rubber based seal

xi. cut out size : 72 mm

9. Downlighter 8

Manufacturer : JCC Lighting

Reference : JC010023 WH/CH/BN
Overall dimensions and construction : See Figure 10 for details

Luminaire Details

i. body materials : Mild Steel

ii. bezel materials : Die Cast Aluminium

iii.weight: 0.30kgiv.input voltage: 220-240vACv.electrical class: Class Ivi.lamp type: GU10 Cap

vii. maximum lamp size : LED GU10 Lamps Only – 10W

viii. IP rating : IP65

ix. operating temperature : Ambient 26°C

x. sealing ring : 9.5 mm wide x 1 mm thick silicone rubber based seal

xi. cut out size : 84 mm

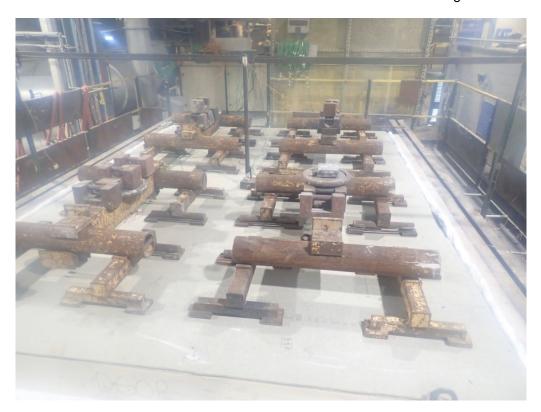
Test Observations

Time		All observations are from the exposed face unless noted otherwise.			
-60	00	Load applied.			
00	00	The test commences.			
09	00	The paper face of plasterboard is burning/glowing away.			
12	00	Downlighter 6 is glowing red.			
24	00	Flickers of flame at Downlighter 7.			
14	30	Tape and jointing beginning to fall away.			
18	00	Long edges of the plasterboard are beginning to ripple.			
20	00	Intermittent flaming at Downlighters; 2, 3, 4, 5 and 6.			
24	00	Ceiling sagging in its centre, light fittings begin to distort.			
25	00	Gaps beginning to open at the plasterboard joints.			
27	00	Constant flaming at Downlighters 5 and 6 as the bezels fall.			
27	30	Gaps between the plasterboard joints are around 5 mm.			
28	30	Gaps between the plasterboard joints are around 10 mm.			
29	00	Central section of plasterboard falls from the floor exposing the joists. Intense flaming in the furnace.			
30	30	Smoke release from floor perimeter as viewed from the unexposed face, the floor is sagging in its centre.			
33	00	Test discontinued for safety reasons.			

Test Photographs

The exposed face of the floor assembly prior to test

The unexposed face of the floor assembly prior to test


The unexposed face of the floor assembly after 10 minutes of testing

The unexposed face of the floor assembly after 20 minutes of testing

The unexposed face of the floor assembly after 30 minutes of testing

The unexposed face of the floor assembly after 33 minutes of testing

Temperature, Pressure and Deflection Data

Mean Furnace Temperature, Together With The Temperature/Time Relationship Specified In BS 476: Part 21: 1987

	o		
Time	Specified	Actual	
	Furnace	Furnace	
Mins	Temperature	Temperature	
	Deg. C	Deg. C	
0	20	38	
1	349	330	
2	445	416	
3	502	482	
4	544	561	
5	576	578	
6	603	601	
7	626	621	
8	646	636	
9	663	663	
10	678	679	
11	693	692	
12	706	697	
13	717	716	
14	728	728	
15	739	731	
16	748	739	
17	757	759	
18	766	767	
19	774	777	
20	781	786	
21	789	786	
22	796	791	
23	802	798	
24	809	799	
25	815	813	
26	820	833	
27	826	836	
28	832	836	
29	837	840	
30	842	864	
31	847	861	
32	852	859	
33	856	860	

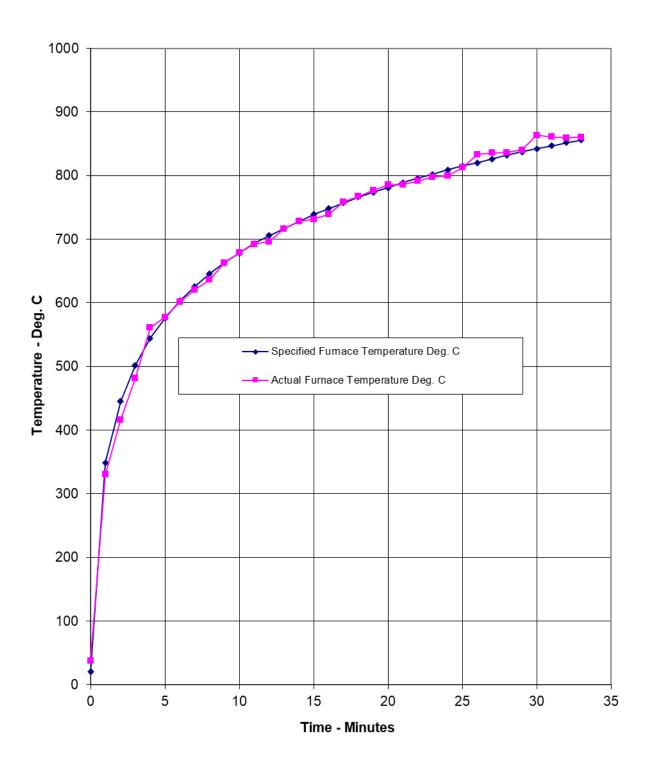
Individual And Mean Temperatures Recorded On The Unexposed Surface Of The Floor

Time	T/C	T/C	T/C	T/C	T/C	Mean
	Number	Number	Number	Number	Number	
Mins	211	212	213	214	215	Temp
	Deg. C					
0	26	26	25	28	19	25
1	26	26	25	28	19	25
2	26	26	25	28	19	25
3	26	26	25	28	19	25
4	26	26	25	28	19	25
5	26	26	25	28	*	26
6	26	26	25	28	*	26
7	26	26	25	*	*	26
8	26	26	25	28	*	26
9	26	26	25	28	*	26
10	26	26	26	28	*	27
11	26	26	26	29	*	27
12	26	27	27	29	*	27
13	27	27	27	30	*	28
14	27	27	28	30	*	28
15	28	28	28	31	*	29
16	28	29	29	31	*	29
17	29	*	*	32	*	31
18	30	30	30	33	28	30
19	30	31	31	34	28	31
20	31	31	31	34	27	31
21	32	32	32	35	27	32
22	32	33	33	36	27	32
23	33	33	33	37	27	33
24	34	34	34	37	27	33
25	34	34	34	38	27	33
26	35	35	35	39	27	34
27	36	36	36	40	28	35
28	36	36	36	40	28	35
29	37	37	37	41	28	36
30	38	37	38	43	28	37
31	38	38	39	46	32	39
32	39	39	41	60	43	44
33	39	40	47	76	52	51

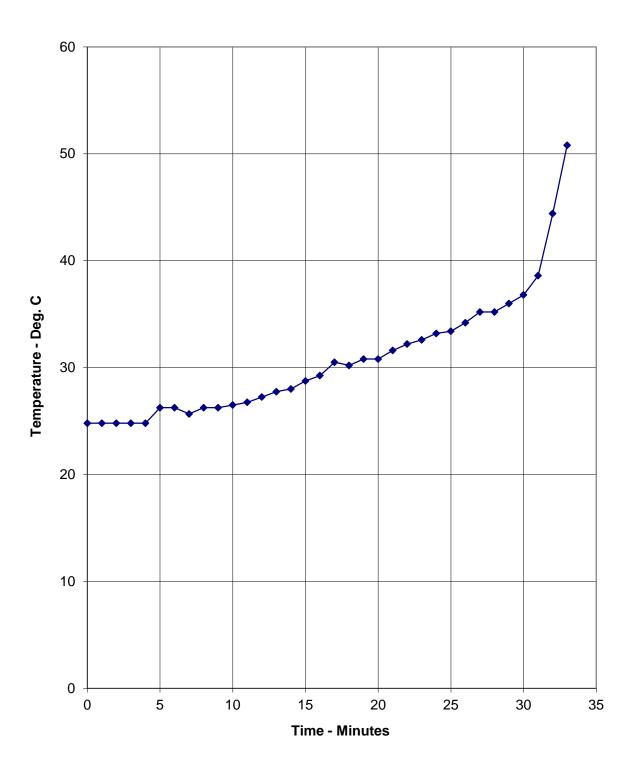
^{*}Thermocouple malfunction

Individual Temperatures Recorded Adjacent To Joints In The Flooring

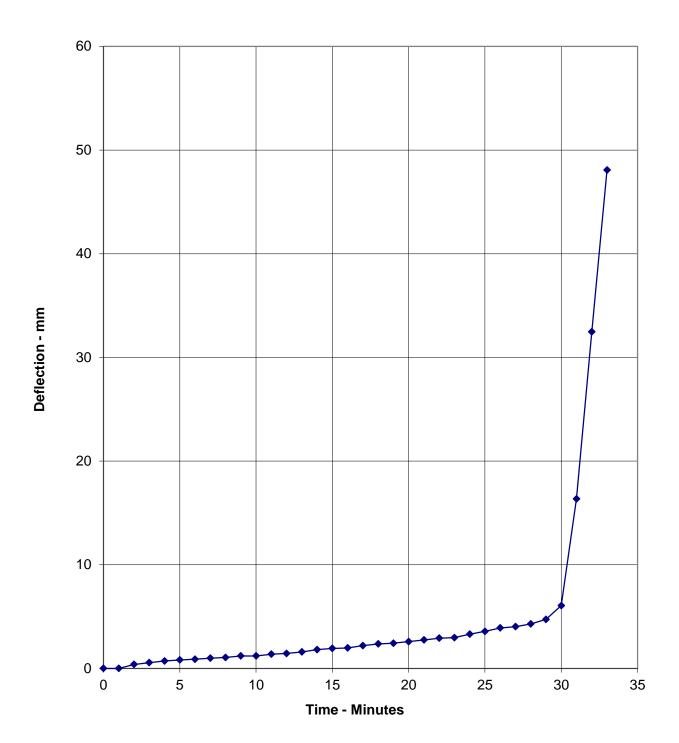
Time	T/C	T/C	T/C
	Number	Number	Number
Mins	217	218	227
	Deg. C	Deg. C	Deg. C
0	26	27	26
1	26	27	26
2	26	27	26
3	26	26	26
4	26	26	26
5	26	26	26
6	26	26	26
7	26	26	26
8	26	26	26
9	26	26	26
10	26	27	26
11	26	27	26
12	26	27	26
13	27	28	26
14	27	29	26
15	27	29	26
16	28	30	26
17	28	31	26
18	29	32	26
19	30	33	26
20	30	34	26
21	31	35	26
22	32	36	27
23	33	37	27
24	33	38	27
25	34	39	28
26	35	40	28
27	36	41	28
28	36	42	29
29	37	43	29
30	38	45	30
31	39	46	30
32	40	47	30
33	41	49	31

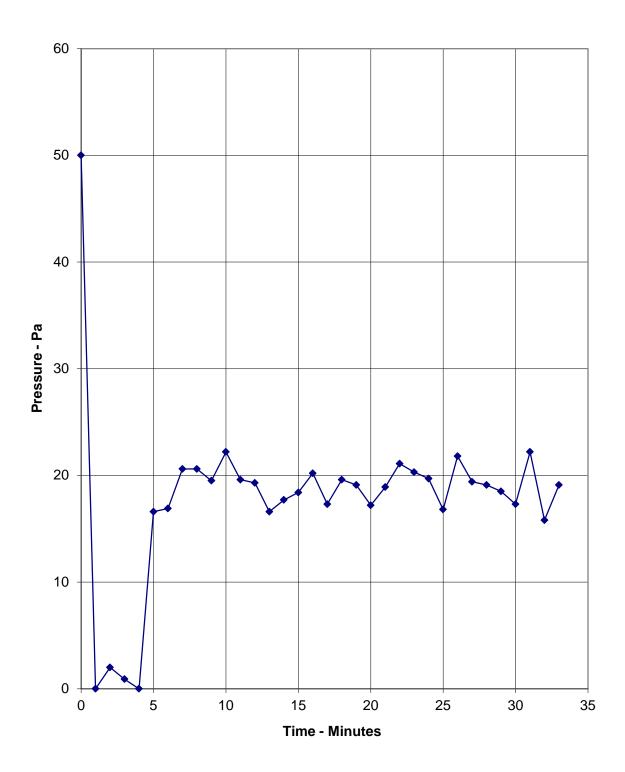

Individual Temperatures Recorded Mid-Height Of The Air Cavity

Time	T/C							
	Number							
Mins	219	220	221	222	223	224	225	226
	Deg. C							
0	38	38	36	34	36	34	37	36
1	38	38	37	35	36	34	37	36
2	38	39	37	36	37	35	38	37
3	40	41	40	39	41	38	45	42
4	46	48	47	46	51	45	57	51
5	55	57	55	53	58	54	66	59
6	63	63	60	59	69	60	76	66
7	69	69	66	65	79	66	80	73
8	74	75	71	69	85	71	84	76
9	81	81	74	73	94	75	88	82
10	86	85	78	77	105	80	95	89
11	94	88	81	80	111	84	101	90
12	95	96	87	83	117	88	100	94
13	98	96	90	87	121	91	118	96
14	102	100	91	89	108	95	122	99
15	102	102	95	91	107	97	126	104
16	107	107	96	93	126	99	119	102
17	107	115	97	96	137	103	132	102
18	105	111	101	97	145	105	134	114
19	106	116	102	99	147	108	135	108
20	107	111	103	100	145	112	145	107
21	108	113	104	103	153	117	142	110
22	111	117	107	103	144	118	140	114
23	112	119	109	105	144	121	148	123
24	117	124	110	107	154	125	161	140
25	125	129	113	109	170	127	186	165
26	138	141	116	112	194	136	198	185
27	153	158	122	117	225	149	225	202
28	171	174	130	126	245	166	244	235
29	183	193	139	138	271	185	253	255
30	198	202	176	181	626	289	694	743
31	209	213	217	207	688	304	703	792
32	218	243	292	227	742	335	771	810
33	230	246	366	249	779	384	786	824


Deflection And Rate Of Deflection Of The Floor Assembly During The Test

Time	Central	Rate
	Vertical	Of
Mins	Deflection	Deflection
	mm	mm/min
0	0.000	0.000
1	0.000	0.000
2	0.386	0.386
3	0.554	0.168
4	0.722	0.168
5	0.822	0.100
6	0.890	0.068
7	0.990	0.100
8	1.057	0.067
9	1.208	0.151
10	1.208	0.000
11	1.376	0.168
12	1.443	0.067
13	1.594	0.151
14	1.813	0.219
15	1.930	0.117
16	1.981	0.051
17	2.199	0.218
18	2.367	0.168
19	2.434	0.067
20	2.585	0.151
21	2.753	0.168
22	2.921	0.168
23	2.971	0.050
24	3.307	0.336
25	3.575	0.268
26	3.911	0.336
27	4.028	0.117
28	4.297	0.269
29	4.733	0.436
30	6.059	1.326
31	16.348	10.289
32	32.462	16.114
33	48.072	15.610


Graph Showing Specified And Actual Furnace Temperatures


Graph Showing Mean Unexposed Surface Temperature Of The Floor Assembly

Graph Showing The Central Vertical Deflection Of The Floor Assembly During The Test

Graph Showing Recorded Furnace Pressure 100 mm Below The Underside Of The Floor Assembly

On-going Implications

Limitations

The results relate only to the behaviour of the specimen of the element of construction under the particular conditions of test. They are not intended to be the sole criteria for assessing the potential fire performance of the element in use, nor do they reflect the actual behaviour in fires.

The test results relate only to the specimen tested. Appendix A of BS 476: Part 20: 1987 provides guidance information on the application of fire resistance tests and the interpretation of test data. Application of the results to assemblies of different dimensions or incorporating different components should be the subject of a design appraisal.

The tested assembly was asymmetrical, the test results may not be appropriate to situations where the assembly is mounted in the opposite orientation to that tested.

Review

The specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

Fire Test Study Group

Certain aspects of some fire test specifications are open to different interpretations. The Fire Test Study Group have identified a number of such areas and have agreed Resolutions which define common agreement of interpretations between fire test laboratories which are members of the Group. Where such Resolutions are applicable to this test they have been followed.